View Full Course Details including Latest Schedule Online **MICROSOFT** # DP-100T01: Designing and Implementing a Data Science Solution on Azure **BONUS! Cyber Phoenix Subscription Included:** All Phoenix TS students receive complimentary ninety (90) day access to the Cyber Phoenix learning platform, which hosts hundreds of expert asynchronous training courses in Cybersecurity, IT, Soft Skills, and Management and more! #### **Course Overview** Phoenix TS' 3-day instructor-led Microsoft Designing and Implementing a Data Science Solution on Azure training and certification boot camp in Washington, DC Metro, Tysons Corner, VA, Columbia, MD or Live Online will instruct you how to operate machine learning solutions at cloud scale using Azure Machine Learning. This course teaches you to leverage your existing knowledge of Python and machine learning to manage data ingestion and preparation, model training and deployment, and machine learning solution monitoring in Microsoft Azure. # What You'll Learn - Doing Data Science on Azure - Doing Data Science with Azure Machine Learning service - Automate Machine Learning with Azure Machine Learning service - Manage and Monitor Machine Learning Models with the Azure Machine Learning service # **Schedule** Currently, there are no public classes scheduled. Please contact a Phoenix TS Training Consultant to discuss hosting a private class at 301-258-8200. # **Program Level** Advanced # **Training Delivery Methods** Group Live #### **Duration** 3 Days / 24 hours Training # **CPE** credits 13 NASBA CPE Credits # **Field of Study** Information Technology # **Advanced Prep** N/A # **Course Registration** Candidates can choose to register for the course by via any of the below methods: • Email: <u>Sales@phoenixts.com</u> • Phone: 301-582-8200 · Website: www.phoenixts.com Upon registration completion candidates are sent an automated course registration email that includes attachments with specific information on the class and location as well as pre-course study and test preparation material approved by the course vendor. The text of the email contains a registration confirmation as well as the location, date, time and contact person of the class. Online enrolment closes three days before course start date. On the first day of class, candidates are provided with instructions to register with the exam provider before the exam date. # **Complaint Resolution Policy** To view our complete Complaint Resolution Policy policy please click here: Complaint Resolution Policy #### **Refunds and Cancellations** To view our complete Refund and Cancellation policy please click here: Refund and Cancellation Policy #### Who Should Attend This course is designed for data scientists with existing knowledge of Python and machine learning frameworks like Scikit-Learn, PyTorch, and Tensorflow, who want to build and operate machine learning solutions in the cloud. # **Prerequisites** Before attending this course, students must have: - A fundamental knowledge of Microsoft Azure - Experience of writing Python code to work with data, using libraries such as Numpy, Pandas, and Matplotlib. - Understanding of data science; including how to prepare data, and train machine learning models using common machine learning libraries such as Scikit-Learn, PyTorch, or Tensorflow. ## **Exam Information** ## DP-100: Designing and Implementing a Data Science Solution on Azure | Set up an Azure Machine Learning workspace | 30-35% | |--|--------| | Run experiments and train models | 25-30% | | Optimize and manage models | 20-25% | | Deploy and consume models | 20-25% | You can purchase the exam voucher separately through Phoenix TS. Phoenix TS is an authorized testing center for Pearson VUE and Prometric websites. Register for exams by calling us or visiting the Pearson VUE and Prometric websites. ## **Duration** 3 Days **Price** \$1,945 #### **Course Outline** #### **Module 1: Introduction to Azure Machine Learning** In this module, you will learn how to provision an Azure Machine Learning workspace and use it to manage machine learning assets such as data, compute, model training code, logged metrics, and trained models. You will learn how to use the web-based Azure Machine Learning studio interface as well as the Azure Machine Learning SDK and developer tools like Visual Studio Code and Jupyter Notebooks to work with the assets in your workspace. - Getting Started with Azure Machine Learning - Azure Machine Learning Tools Lab: Creating an Azure Machine Learning Workspace Lab: Working with Azure Machine Learning Tools After completing this module, you will be able to - Provision an Azure Machine Learning workspace - Use tools and code to work with Azure Machine Learning # **Module 2: No-Code Machine Learning with Designer** This module introduces the Designer tool, a drag and drop interface for creating machine learning models without writing any code. You will learn how to create a training pipeline that encapsulates data preparation and model training, and then convert that training pipeline to an inference pipeline that can be used to predict values from new data, before finally deploying the inference pipeline as a service for client applications to consume. - Training Models with Designer - Publishing Models with Designer Lab: Creating a Training Pipeline with the Azure ML Designer Lab: Deploying a Service with the Azure ML Designer After completing this module, you will be able to - Use designer to train a machine learning model - Deploy a Designer pipeline as a service #### **Module 3: Running Experiments and Training Models** In this module, you will get started with experiments that encapsulate data processing and model training code, and use them to train machine learning models. - Introduction to Experiments - Training and Registering Models **Lab: Running Experiments** **Lab: Training and Registering Models** After completing this module, you will be able to - Run code-based experiments in an Azure Machine Learning workspace - Train and register machine learning models #### Module 4: Working with Data Data is a fundamental element in any machine learning workload, so in this module, you will learn how to create and manage datastores and datasets in an Azure Machine Learning workspace, and how to use them in model training experiments. - Working with Datastores - Working with Datasets Lab: Working with Datastores #### Lab: Working with Datasets After completing this module, you will be able to - Create and consume datastores - Create and consume datasets. #### **Module 5: Compute Contexts** One of the key benefits of the cloud is the ability to leverage compute resources on demand, and use them to scale machine learning processes to an extent that would be infeasible on your own hardware. In this module, you'll learn how to manage experiment environments that ensure consistent runtime consistency for experiments, and how to create and use compute targets for experiment runs. - Working with Environments - Working with Compute Targets Lab: Working with Environments Lab: Working with Compute Targets After completing this module, you will be able to - Create and use environments - Create and use compute targets #### **Module 6: Orchestrating Operations with Pipelines** Now that you understand the basics of running workloads as experiments that leverage data assets and compute resources, it's time to learn how to orchestrate these workloads as pipelines of connected steps. Pipelines are key to implementing an effective Machine Learning Operationalization (ML Ops) solution in Azure, so you'll explore how to define and run them in this module. - Introduction to Pipelines - Publishing and Running Pipelines Lab: Creating a Pipeline Lab: Publishing a Pipeline After completing this module, you will be able to - · Create pipelines to automate machine learning workflows - Publish and run pipeline services #### **Module 7: Deploying and Consuming Models** Models are designed to help decision making through predictions, so they're only useful when deployed and available for an application to consume. In this module learn how to deploy models for real-time inferencing, and for batch inferencing. - · Real-time Inferencing - Batch Inferencing Lab: Creating a Real-time Inferencing Service Lab: Creating a Batch Inferencing Service After completing this module, you will be able to - Publish a model as a real-time inference service - Publish a model as a batch inference service #### **Module 8: Training Optimal Models** By this stage of the course, you've learned the end-to-end process for training, deploying, and consuming machine learning models; but how do you ensure your model produces the best predictive outputs for your data? In this module, you'll explore how you can use hyperparameter tuning and automated machine learning to take advantage of cloud-scale compute and find the best model for your data. - Hyperparameter Tuning - · Automated Machine Learning **Lab: Tuning Hyperparameters** Lab: Using Automated Machine Learning After completing this module, you will be able to - Optimize hyperparameters for model training - Use automated machine learning to find the optimal model for your data #### **Module 9: Interpreting Models** Many of the decisions made by organizations and automated systems today are based on predictions made by machine learning models. It's increasingly important to be able to understand the factors that influence the predictions made by a model, and to be able to determine any unintended biases in the model's behavior. This module describes how you can interpret models to explain how feature importance determines their predictions. - Introduction to Model Interpretation - using Model Explainers Lab: Reviewing Automated Machine Learning Explanations **Lab: Interpreting Models** After completing this module, you will be able to - Generate model explanations with automated machine learning - Use explainers to interpret machine learning models #### **Module 10: Monitoring Models** After a model has been deployed, it's important to understand how the model is being used in production, and to detect any degradation in its effectiveness due to data drift. This module describes techniques for monitoring models and their data. #### Monitoring Models with Application Insights Monitoring Data Drift Lab: Monitoring a Model with Application Insights Lab: Monitoring Data Drift After completing this module, you will be able to - Use Application Insights to monitor a published model - · Monitor data drift **BONUS! Cyber Phoenix Subscription Included:** All Phoenix TS students receive complimentary ninety (90) day access to the Cyber Phoenix learning platform, which hosts hundreds of expert asynchronous training courses in Cybersecurity, IT, Soft Skills, and Management and more! Phoenix TS is registered with the National Association of State Boards of Accountancy (NASBA) as a sponsor of continuing professional education on the National Registry of CPE Sponsors. State boards of accountancy have final authority on the acceptance of individual courses for CPE credit. Complaints re-garding registered sponsors may be submitted to the National Registry of CPE Sponsors through its web site: www.nasbaregistry.org Starting at **\$1,945** # **ATTENTION** For GSA pricing or Contractor quotes call 301-258-8200 - Option 2. GSA #### **Price Match Guarantee** We'll match any competitor's price quote. Call us at 240-667-7757.