SECURITY+ STUDY GUIDE TABLE OF CONTENTS

Chapt	er 1: Security Fundamentals	3	
•	Module A: Security concepts	3	
•	Module B: Risk management	4	
•	Module C: Vulnerability assessment	6	
Chapter 2: Understanding attacks7			
•	Module A: Understanding Attackers	7	
•	Module B: Social engineering	7	
•	Module C: Malware	8	
•	Module D: Network attacks	9	
٠	Module E: Application attacks	9	
Chapt	er 3: Cryptography	10	
•	Module A: Cryptography concepts	10	
•	Module B: Public key infrastructure	12	
Chapt	er 4: Network fundamentals	12	
•	Module A: Network components	12	
•	Module B: Network addressing	14	
•	Module C: Network ports and applications	15	
Chapt	er 5: Securing networks	16	
•	Module A: Network security components	16	
٠	Module B: Transport encryption	17	
•	Module C: Hardening networks	18	
•	Module D: Monitoring and detection	19	
Chapt	er 6: Securing hosts and data	20	
•	Module A: Securing data	20	
•	Module B: Securing hosts	22	
•	Module C: Mobile device security	23	
Chapter 7: Securing network services			
•	Module A: Securing applications	24	
•	Module B: Virtual and cloud systems	26	
Chapter 8: Authentication			
•	Module A: Authentication factors	26	

٠	Module B: Authentication protocols	. 27		
Chapt	Chapter 9: Access control			
•	Module A: Access control principles	. 29		
•	Module B: Account management	. 29		
Chapter 10: Organizational security				
•	Module A: Security policies	. 31		
•	Module B: User training	. 33		
•	Module C: Physical security and safety	34		
Chapter 11: Disaster planning and recovery35				
•	Module A: Business continuity	. 35		
•	Module B: Fault tolerance and recovery	36		
٠	Module C: Incident response	. 36		

Chapter 1: Security Fundamentals

Module A: Security concepts

CIA Triad

The parts of CIA are confidentiality, integrity, and availability.

Risks, Threats, and Vulnerabilities

Risk – The chance of harm coming to an asset Threat – Anything that can cause harm to an asset Vulnerability - Any weakness an asset has against potential threats

Security Standards Organizations

CIS – Center for Internet security IEEE – Institute of Electrical and Electronics Engineers IETF – Internet Engineering Task Force ISO – International Organization for Standardization ISOC – Internet Society ITU – International Telecommunication Union NIST – National Institute of Standards and Technology NSA – National Security Agency W3C – World Wide Web Consortium

Security Controls

Administrative – Organizational policies and training Technical – Technological solutions Operational – Day to day employee activities Physical – Physical safety and security devices Preventive - Proactive controls which act to prevent loss Detective - Monitoring controls that detect and/or record Corrective - Follow-up controls used to minimize the harm caused and prevent recurrence Deterrent - Visible controls designed to discourage attack or intrusion

Confidentiality Controls

Least privilege - Users are given only the permissions they need to perform their actual duties Need to know - Data access is restricted to those who need it Separation of duties - Tasks broken into components performed by different people Access controls - Access restricted to authorized users Encryption - Data made unreadable without proper key Steganography - Secret messages concealed inside of ordinary ones

Integrity Controls

Hashing - Digital fingerprints used to detect file alteration Digital signatures - Hashing and encryption used to prove a file's origin Backups - Spare copies of data kept in safe storage Version control - Formal preservation and tracking of multiple file versions

Availability Controls

Redundancy - Multiple or backup systems designed for immediate or quick recovery

Fault tolerance – Systems that continue functioning after components fail Patch management – Application of software updates with minimal service disruption

Defense in Depth

Comprehensive security controls that exist on all levels of an organization. Usually defines multiple layers in which an organization needs to be secured.

e.g. Data

Application Host Internal Network Perimeter Network Physical facility Users and organization

Events and Incidents

True positive – Problem occurred and was detected True negative – No problem, and no alert False positive – Alert triggered by benign event False negative – Real problem went undetected

Module B: Risk management

Risk Assessment

- 1. Identify assets at risk
- 2. Conduct threat assessment for each asset
- 3. Analyze business impact for each threat
- 4. Determine likelihood of threat doing damage
- 5. Prioritize risks by weighing likelihood vs. potential impact
- 6. Create risk mitigation strategy

Identifying Assets

Information and data Computing hardware and software Business inventory Building or other physical facilities Cash or other financial assets Personnel Branding and business reputation Business relationships, including partner assets in organization's keeping

Threat Assessments

Environmental accident Natural disaster Equipment failure Supply chain failure Human error Malicious outsider Malicious insider

Impact Analysis

Replacement cost Revenue or opportunity loss Production loss Human costs Reputation Legal consequences

Privacy Impact Assessment

Ensure compliance with external regulations and internal policies on privacy Analyze potential privacy risks and impacts Evaluate security controls to minimize risks

Threat Probability

MTTF – Mean time to failure MTTR – Mean time to repair MTBF – Mean time between failures MTBSI – Mean time between service incidents

Quantitative Risk Assessment Values

SLE – Single loss expectancy is cost of any single loss ARO – Annual rate of occurrence is expected number of times given loss may occur per year ALE – Annual loss expectancy is expected cost per year from threat (SLE × ARO).

Risk Assessment

Quantitative Single loss expectancy Annual rate of occurrence Qualitative

Risk Management

Avoidance Transference Mitigation Deterrence Acceptance Residual risk

Mitigation Techniques

Technology controls Policies and procedures Routine audits Incident management Change management

Automated Security Tools

Device or system configuration tools Continuous monitoring and alert systems Configuration validation tools Vulnerability scanners Remediation tools Patch management software Automated trouble shooters Application testers

Module C: Vulnerability assessment

Vulnerability Assessments,

Baseline review Determining attack surface Reviewing code Reviewing architecture Reviewing design

Vulnerability Scans

Intrusive vs. non-intrusive Credentialed vs. non-credentialed Goals:

> Missing or misconfigured security controls Open ports Weak passwords or encryption Misconfigured security controls Unsecured data Compromised systems Exploitable vulnerabilities Unpatched systems

Penetration tests

Black box – no attacker knowledge of the system White box – Full attacker knowledge of system Gray box - Partial attacker knowledge systems

Network Reconnaissance

Passive reconnaissance Active reconnaissance Vulnerability analysis

Penetrating Networks

Escalate privileges:

Gathering user names or password hashes Gaining additional privileges Finding exploitable information Installing malware Establishing persistence Installing backdoors Creating alternate accounts Compromising authentication systems

Pivot:

Perform reconnaissance on internal networks Create tunnels to bypass firewalls and other boundaries Exploit trust relationships

Chapter 2: Understanding attacks

Module A: Understanding Attackers

Types of Hackers

Black hat – criminal hackers White hat – Security experts who hack for legal purposes Grey hat – Hackers that are neither white nor black hats

Attacker Qualities

- 1. Intent: Some hackers are after specific resources or information, others will take whatever they can find, and others just want to deny service or destroy information.
- 2. Sophistication: Some attackers are relatively inexperienced, others use much more subtle methods.
- 3. Resources: Some attackers are groups working to a common cause, while some lone attackers have access to powerful resources.
- 4. Location: Some attacks require physical proximity, while others can be conducted from anywhere in the world.
- 5. Target information: Some attackers might know little about your organization, while others might have critical information about your assets.

Attacker Types

Script Kiddies Hacktivists Organized criminals Competitors Insiders Nation states Advanced persistent threats (APTs)

🖊 Module B: Social engineering

Social Engineering Principles

Authority Intimidation Consensus/Social proof Scarcity Urgency Familiarity Trust

Phishing

Spear phishing – targets specific users Whaling – Singles out high-profile targets Vishing – Applies phishing techniques to voice calls

Physical Intrusion

Shoulder surfing – eavesdropping on sensitive reading or conversations Tailgating – tagging behind someone into a secure area Dumpster diving – stealing sensitive data from the trash

Social Engineering Defenses

User training – information sharing guidelines, don't share passwords, ignore suspect requests Policies – Least privilege/need to know, logoff, data disposal Technical controls – mantraps, spam filters, network controls

📥 Module C: Malware

Malware Vectors

Virus – attaches malicious code to another file Worm – replicates itself by exploiting system vulnerabilities Trojan horse – masquerades as a useful program Logic bomb – lies dormant until a specific condition is met Watering hole – injection on a trusted site or service used by actual targets

Malware payloads

Backdoor – hidden way into a system or application Botnet – large number of controlled systems Ransomware – attempts to extort money to undo damage Spyware – secretly records user activity Adware – Presents ads to the user

Hidden Malware

Polymorphic malware – changes signatures Stealth malware – hides from antimalware programs Rootkit – compromises boot or OS functions to avoid detection

Malware Defenses

Legitimate sourcing – for all hardware and software Antimalware – antivirus and specialized scanners System permissions – restricting user installation of applications Security updates – browsers and addons as well as OS Network security – Firewalls, IDS, spam filters Policies and training – Unknown sites, phishing links, removable media

Module D: Network attacks

Network Probes

Xmas attack – too many flags set Fuzzing – random data input Banner grabbing – normal request used to gather return data

Spoofing

Can mimic or pretend to be an IP address, MAC address, Email address, etc.

Redirection

ARP poisoning – performed by inside attackers DNS poisoning – More difficult but works on larger networks Pharming – similar to phishing but with compromised DNS VLAN hopping – bypasses VLAN segmentation

Denial of Service Variants

Ping of death – oversized packets or malformed packets Syn Flood Permanent DOS Unintentional DOS

Password Cracking

Brute force – try all combinations in sequence Dictionary attack – try entries from a list Birthday attack – finds hash collisions Rainbow table – uses pre-compiled hash list Pass the hash – Uses hash stolen from a single compromised system

Man in the Middle Attacks

Replay attack Session replay Session hijacking Downgrade

Wireless Attacks

Wardriving – searching for open hotspots Rogue AP – unauthorized hotspot Bluejacking – radio interference Blue snarfing – theft of information Evil twin – rogue AP used for MitM

Module E: Application attacks

Application Exploits

Privilege escalation Directory traversal – reaching additional folders on target computer Arbitrary code execution – running malicious code on target computer Resource exhaustion

Input Manipulation

Header manipulation – changing values in headers used by communication protocol Memory manipulation – sending input that affects variables and other values Injection – sending specifically formatted input

Memory Vulnerabilities

Buffer overflow – sending too much information to the application Integer overflow – setting integer variable to value that exceeds maximum size to store it Pointer dereference – directly retrieve value that a pointer points to Memory leak – cause application to allocate memory but never release it

SQL Injection

Unfiltered escape characters – special characters used by SQL Improper input types – placing wrong data types into fields Blind injection – gathering information through page output changes Signature evasion – hiding signs of attack from IDS

Other Injection Techniques

NoSQL injection – targets non-relational databases LDAP injection – targets network directory services XML injection – targets XML databases Command injection – targets remote command shells DLL injection – targets running processes

Cross-site scripting

Stored/Persistent – script uploaded as permanent content Reflected/Non-persistent – script temporarily placed in error field or search response DOM-based – script run entirely in the client browser

Chapter 3: Cryptography

Module A: Cryptography concepts

Classical ciphers

Substitution ciphers – vulnerable to frequency based attacks Transportation ciphers – vulnerable to partial solution attacks Steganography – hides existence of secret message, digital variants

Digital Encryption

Uses – transport, storage, memory, cryptographic obfuscation Methods – symmetric, asymmetric, cryptographic hashing XOR functions

Key Strength Key length – n = 2 to the n power combinations

Key length vs effective strength – advancing computing power requires stronger encryption over time, varies by type of encryption key security

Symmetric Algorithms

DES – obsolete, 56-bit key 3DES – three 56-bit keys, but effectively 80-bit AES – NSA standard, 128 to 256-bit key Blowfish – first strong public domain cipher, variable key size Twofish – improved blowfish, AES competitor Serpent – AES finalist, powerful but slow RC4 – stream cipher, old but common CAST – popular family, includes CAST-128 and CAST-256

Key Life Cycles

Key duration – static and ephemeral Key generation Key exchange – in band and out of band Perfect forward secrecy

Asymmetric Encryption

Public and private keys – one key encrypts, opposite decrypts Uses – key exchange, authentication and non-repudiation Drawbacks – longer keys, slower performance

Asymmetric Algorithms

RSA – Key generated from two prime numbers, up to 4096-bit key, used for digital signatures DSA – Adopted as NIST standard, uses one-way problem called discrete logarithm ECC – based on exotic mathematics, higher performance and shorter keys than RSA DH – first openly published public-key system, many variants Quantum cryptography – quantum key distribution

Cryptographic Hashes

One-way functions – easy to verify, hard/impossible to recover Data integrity – creates fingerprint of data Data identification – hash table Key generation – pseudorandom string Password storage – user password hashed and compared to stored has, salting for additional security

Hash Algorithms

MD5 – 128-bit, obsolete SHA-1 – 160-bits, being phased out SHA-2 – SHA 256 and SHA 512 SHA-3 Password hashes – NTLM, bcrypt, PBKDF2

Module B: Public key infrastructure

Digital Certificates

Also known as public key certificates Contents – public key, owner identity, digital signatures attesting to authenticity Not to be confused with digital signatures – certificates proves identity of a user or a system

Certificate Encodings

DER PEM CER P12 PFX P7B

Certificate Authorities

CA signs and revokes certificates Root certificates – out of band distribution Certificate generation – limited purpose, multi domain, wildcard, extended validation

Certificate Generation

- 1. Applicant generates key pair, keeps private key
- 2. Applicant presents public key and CSR to CA
- 3. CA verifies applicant identity according to CPS
- 4. CA signs and disseminates certificate

Certificate Revocation

Certificate revocation list – list of all revoked certificates Online Certificate Status Protocol – shows status of a particular certificate

Key Pinning

Stating pinning – browser's publisher pins keys of high traffic sites Dynamic pinning – uses IETF standard HTTP public key pinning, pins key to check against every subsequent contact

Key Archival and Recovery

Private keys – backed up along with system Compromise – back up key stores and corresponding certificates separately from other data Dedicated hardware storage modules – contain valuable keys, may include secure backup functions

Chapter 4: Network fundamentals

Module A: Network components

Network Models

OSI Model – Important educational and theoretical tool TCP/IP – Designed by US DOD, maintained by IETF, Dominant standard of internet

Data Link Layer

Combined with physical layer in TCP/IP Contains technologies that can handle addresses, traffic direction and security (ex: MAC addresses, Switches, VLANs)

MAC address

A.K.A. physical addresses Represent physical devices Used for address filtering

Switches

Direct local traffic Tracks addresses with a MAC table Are vulnerable to MAC spoofing

VLANs

Separate broadcast domains on same physical switch Collection of methods rather than single standard Port based, dynamic, and protocol based

The Network Layer

Extends beyond broadcast domain Allows for larger networks by reducing congestion and preventing switching loops Uses more intelligent protocols for routing and logical addressing

Routers

Joins two broadcast domains Separates subnets Can communicate with other routers Is aware of surrounding network structure

ICMP

Used for control and error messages Needed for core network functions Includes several message types

> Echo request and reply (ping) Host unreachable Source quench Redirect Time exceeded

Wi-Fi Signals

2.4 GHz – most common with relatively long range but a small number of channels

5 GHz – more expensive with shorter range but with more channels 60 GHz – Very high data rate but can't pass through walls, requires line of sight

Antenna types

Omnidirectional and directional

Industrial Control Systems

SCADA – Large scale distribution systems, information gathering with limited control DCS – Process control systems, direct control with limited information gathering *Neither are designed for security

🖶 Module B: Network addressing

IPv4 Addresses

Comprised of Network ID and Host ID Have Classful and Classless addresses Classful – Class A/B/C/D/E

Special IPv4 Addresses

Broadcast – 255.255.255.255 Loopback – 127.0.0.0 Private Addresses – 10.0.0.0 /8, 172.16.0.0 /12, 192.168.0.0 /17 APIPA – 169.254.0.0 /16

IPv6

Massive address range (much higher than IPv4) Easier network configuration Increased efficiency and enhanced security Compatibility issues

IPv6 Address Types

Loopback - ::1 /128 Link-local – fe80:: /10 which is equivalent to APIPA Site-local – similar to IPv4 private Global - 2000:: /3 Multicast – will begin with ff

DHCP

Server contains pool of available network addresses called scope Addresses assigned dynamically or by reservation DHCP server options – default gateway, DNS server addresses, Time server or time zone *If DHCP server is not on client's local segment, routers can be DHCP relay agents

Module C: Network ports and applications

Transport Protocols

End to end communications Uses ports or sockets for host-level multiplexing The two most common protocols are TCP and UDP

ТСР

Connection oriented Reliable Error correction Flow control Sequencing

UDP

Connectionless Unreliable Fast Used for time-sensitive data, small data exchanges

Port Ranges

System ports – assigned to major TCP/IP standards (1-1023) User ports – assigned to any application which registers for one (1024-49151) Private ports – used by private applications or temporary uses (49152-65535)

Application Protocols

Restrict plaintext protocols Combine insecure protocols with others that provide security Use lower layers of security such as VPN, Wi-FI encryption Network segmentation

Remote Access Protocols

Telnet – insecure, text-based terminal connections on TCP port 23 Secure Shell – Secure telnet replacement, uses TCP port 22 Remote Desktop Protocol – Windows proprietary remote access protocol, TCP port 3389 Simple Network Management Protocol – v1 and v2 are obsolete, v3 is secure used on UDP ports 161 and 162

Resource Sharing Protocols

LDAP – Directory service on LAN, uses TCP 389 NetBIOS – Session-layer API used by multiple applications SMB – Allows Windows folder sharing on LAN FTP – File access on LAN or internet, replaced by FTPS and SFTP, TCP port 20 and 21 TFTP – simplified FTP protocol, UDP port 69 NTP – Used to synchronize clocks between networked devices

Hypertext Transfer Protocol

Insecure plaintext protocol Uses TCP port 80 HTTPS – Encrypted using SSL or TLS, uses TCP port 443

Email Protocols

SMTP – Only used to send email between servers or from clients to servers
POP – Used by clients to retrieve mail from servers, uses TCP port 110
IMAP – Used by clients to retrieve mail from servers, stores messages permanently on the server
MAPI – Propriety Microsoft Exchange protocol for sending and receiving

TCP/IP Tools

Ipconfig – Windows, displays, or refreshes IP settings Ifconfig – Unix, displays or configures IP settings Netstat – displays variety of network information Nbtstat – Windows, displays diagnostic information for NetBIOS over TCP/IP Arp – displays IPv4 ARP cache Nslookup – Performs DNS lookups and displays IP address Ping – tests reachability of host Traceroute/tracert – displays hop-by-hop path to given host Pathping – Windows, pings every hop along route to determine latency

Chapter 5: Securing networks

Module A: Network security components

Network ACLs

Packet filtering – MAC address, IP address, port number, protocol Is either an implicit deny or allow

Switch Security Features

Port security – Allows or denies traffic based on source MAC address MAC filtering – Useful, but easier to circumvent Loop protection – Helps increase network availability by preventing accidental loops

Network Access Control

Guest network – Separate access point with only internet access Posture assessment – Ensures client meets security rules, acts as a quarantine network Agents – can be persistent or non-persistent

Intrusion Detection and Prevention

Signature-based – looks for telltale signs of known attacks Stateful protocol analysis – looks for abnormal protocol use Anomaly-based/Heuristic – looks for unusual behavior patterns

Honeypots and Honeynets

Decoy system – has weak or flawed security and is isolated from the rest of the network Honeynet – network of honeypots Used for testing and criminal investigations

Application Layer Security

Application layer firewall – web application firewall Content filter – web filter and spam filter

Load Balancing Techniques

SSL acceleration Data compression Health checking TCP offloading and TCP buffering

Unified Threat Management

Firewall
IDS
IPS
DMZ interface
NAT or proxy server
Network access control
VPN endpoint

Module B: Transport encryption

SSL and TLS

Upper layer protocols – SSL 1.0-3.0 and TLS 1.0-1.2 Certificate based – Asymmetric key exchange, symmetric bulk encryption

Secure Shell

Designed to replace Telnet and rlogin Uses public key cryptography – X.509 is only one option available

Secure Email

Secures message text, not just transfer S/MIME - Uses X.509 certificates, Only common in high-security enterprise environments PGP - Uses OpenPGP certificates on web of trust model, Commercial and free support

Secure VoIP

Secured by using TLS and RTP with secure RTP

Wireless Encryption

Layer 2 encryption WEP - Extremely weak due to serious flaws in RC4 IV. WPA - Based on draft 802.11i, TKIP is a stronger but still flawed RC4 cipher WPA2 - Based on draft 802.11i, AES mode is strongest Wi-Fi encryption

WPA Authentication

WPA-Personal - Uses pre-shared password hashed with SSID to create key, Convenient but only one key for whole hotspot
WPA-Enterprise - 802.1X using authentication server, EAP-TLS or PEAP authentication, allows individual credentials
WPS - Convenient, but insecure and should be disabled

VPN Solutions

GRE – tunneling but no security PPTP – PPP packets over GRE, not very secure L2TP/IPSEC – can be very secure and is natively supported by most OS SSL/TLS – secure, but supported mostly via third-party SSH – typically used to tunnel single applications

IPsec

IKE – Negotiates secure connections
 Authentication header – provides data integrity and source
 Encapsulating Security Payload – encrypts packet payload itself
 AH and ESP can be used separately or together

Module C: Hardening networks

Segmenting Networks

Collision domains – No privacy without encryption, is mostly found in Wi-Fi hotspots Broadcast domains – limited traffic control, separated by routers VPNs Airgaps – no connection to internal or external network

Hardening Network Hosts

Keep list of hosts, owners, and purposes Perform updates Disable unnecessary services Configure firewalls Policies for temporary network hosts Onboarding and offboarding procedures

Monitoring

Securing Network Infrastructure

Harden devices like hosts Use up to date firmware Allocate network addresses carefully Enable router and switch security Deploy network security systems

Securing Perimeter Networks

Open only necessary ports Minimize value of perimeter and bastion hosts Harden specialized security appliances

Securing Wireless Access Points

Harden like other network appliances Use strong encryption Disable WPS Use 802.1X Choose a unique SSID Use guest networks for untrusted clients Place WAP securely

Module D: Monitoring and detection

Monitoring Tools

Network analyzer – captures and analyses network traffic Interface monitor – examines specific network interface Port mirrors – copies traffic from a port Wireless analyzers – tests wireless congestion and reception SNMP management software – monitoring or remote management Syslog – centrally managed logs

Syslog

Header – unique ID including timestamp and generating device ID Facility – type of program that generated the message Severity level – ranges from 0 (emergency) to 7 (debug)

Placing Monitoring Tools

Some sensors built into devices Place network taps and port mirrors on chokepoints Feed large volumes of data through collection systems

Vulnerability Scanners

Protocol analyzer Port scanner Network mapper Password cracker Wireless scanner Exploitation framework

Security Audits

Logs Incident response reports User activities Device configurations Installed applications

Incident Reports

Alarms Alerts Trends

Chapter 6: Securing hosts and data

🖊 Module A: Securing data

Classification Levels

Top Secret – Grave damage could be done to national security Secret – Less grave, but still national security risk Confidential – Could cause damage to national security, but is less sensitive than secret Unclassified – all other information

Personally Identifiable Information

Can either distinguish an individual or linked to an individual (ex: name, address, bank number, biometric data) Educational Institutions – must protect student records PCI-DSS – policy for the payment card industry

Data Ownership Roles

Data owner Data custodian Data Steward Data user Privacy officer

States of Data

Data in transit

Data at rest Data in use

Data Life Cycle

- 1. Creation/Acquisition
- 2. Use/Storage
- 3. Retention/Archival
- 4. Wiping/Disposal

Share Permission

Read – view file names, subfolders, and data Change – read permissions plus adding, changing and deleting Full control – change, plus can change NTFS permissions

Storage Encryption

Removable drive encryption Archive file encryption Transparent database encryption File or full dusk encryption

Encryption Hardware

Hardware-based disk encryption Smart card USB encryption Trusted platform module Hardware security module

Windows Encryption

Encrypting file system – encrypts individual files and folders, intended for personal files BitLocker – protects entire volumes or computers, controlled by administrator

BitLocker

Encrypts entire volumes Can be used without TPM Three authentication methods – Transparent operation mode, user authentication mode, USB key mode

Secure Media Destruction

Pulverizing – hydraulic or pneumatic processing Pulping – paper recycling reduces documents to liquid slurry Incineration – burning into unrecognizable ash

Module B: Securing hosts

Code Signing

Signature verifies only that signer claims it is safe Private signing keys can be compromised Code signing gives protection only if OS configured to check for signatures

Hardening Operating Systems

Secure operating systems Account control Access control Unnecessary services Directory services Updates

Securing peripherals

External ports External storage devices Digital cameras Shoulder-surfing **Security Software** Antivirus Firewall Anti-spyware Pop-up blockers HIDS File Integrity Monitor

Removing Malware

- 1. Identify symptoms
- 2. Quarantine
- 3. Disable system restore
- 4. Repair infected system
- 5. Update system and schedule future scans
- 6. Enable System Restore and create restore point
- 7. Educate end user and document findings

Quarantining Systems

Isolate removable storage devices or backups

Disable all network shares, file sharing applications, or ongoing connections to other computers

Limit network connectivity

Remediating Infected Systems

Always use updated tools

Combine multiple tools Run multiple scans Try safe mode, restore environments, bootable rescue discs, or removal tools target to specific infection Scan removable media

Securing Repaired Systems

Update all potentially vulnerable software Schedule regular security scans and updates Disable unnecessary services Examine system and application settings

Following Up On Repairs

Discuss findings with involved users Document findings and steps taken Report findings to admins and management

Software Changes

Patch – typically targets a single problem Hotfix – Very specific, niche, or high urgency Service pack – Large compilation of patches Upgrade – New software version Maintenance release – smaller than a service pack

Static Environments

Embedded devices – Network appliances, printers, TVs, HVAC Kiosks Smart devices – Internet of Things SCADA/ICS – Industrial environments Mobile devices In-vehicle computing systems – emerging field Legacy systems – no longer receiving updates

Alternative Threat Mitigation

Security layers Control redundancy and diversity Network segmentation Application firewalls Wrappers Firmware version control

Module C: Mobile device security

Mobile Deployment Models

COBO – Corporate owned, business only BYOD – Bring your own device COPE – Corporate owned, personally enabled CYOD – Choose your own device VDI – Virtual desktop infrastructure

Mobile Data Protection

Device location software – Find my iPhone, Android Device Manager Remote wipe Inventory control Asset tracking Full device encryption Storage segmentation

Mobile Application Security

Application whitelisting Key and credential management Geotagging Encryption Push notifications Transitive trust authentication

Chapter 7: Securing network services

Module A: Securing applications

Software Assurance

Ensure use of secure design – OWASP, NIST and other published standards, handles PII appropriately Development and operations work together with stakeholders

Waterfall Development Model Steps

- 1. Requirements
- 2. Analysis
- 3. Design
- 4. Development
- 5. Testing
- 6. Maintenance

Secure DevOps Practices

Security automation Continuous integration Baselining Immutable systems

Infrastructure as code

Program Life Cycle

Development Compile Linking Distribution Installation Load time Runtime

Securing Code Principles

Least privilege – restrict privilege of users and applications Input validation - evaluate input before processing Input sanitization – delete dangerous characters or add escape characters Cryptography – protect data and applications Data exposure – session tokens, passwords and PII protect from untrusted users Error and exception handling – Fail-safe error handling, high detail error logging

Input validation

Improper characters Unicode characters Improper length Improper values SQL code Browser code

XSS Prevention

- 1. Never insert untrusted data except in allowed locations
- 2. HTML escapes
- 3. Attribute escapes
- 4. JavaScript escapes
- 5. CSS escapes
- 6. URL escapes
- 7. Sanitizing library

Fuzzing

Application fuzzing – tests I/O functions Protocol fuzzing – tests network protocols File format fuzzing – tests file reading/parsing functions

Provisioning

Network provisioning – ensures network resources are available and accessible Server provisioning – setting up server to host application or service

User provisioning – creation and maintenance of user accounts and attributes Deprovisioning – orderly freeing up of resources

Module B: Virtual and cloud systems

Virtual Server Benefits

VMs using different OS can share host without conflict VMs are easier to back up, restore, or move Easier to change or upgrade hardware on hosts

Software-Defined Networking

Control plane – makes decisions about overall flow of traffic Data plane – does work of moving individual frames and packets through network

Virtual Security Benefits

Snapshots – allows easy reversion when problems occur Sandboxing – isolated from outside host Security control testing Patch compatibility Availability/elasticity – convenient for load balancing and restoration

Cloud Service Models

Software as a service – subscription based access to applications or databases Platform as a service – access to computing platform that can be used to host applications Infrastructure as a service – access to computing and network resources themselves

Cloud Security

Still subject to network attacks Using off-premises service requires secure communications Control given to another entity Attacks on cloud services can affect many services Varying privacy policies

Chapter 8: Authentication

Module A: Authentication factors

The AAA Process

Security principals Authentication – verified identification of a principal Authorization – specifying accessible resources Accounting – tracking user actions

Authentication

Knowledge – something you know Possession – something you have Inherence – something you are Behavior – something you do Location – somewhere you are

Digital Credentials

Digital certificate – verifiable cryptographic signature One time password – generated by pseudorandom algorithm Hardware token – stores OTP generator or certificate Software token Magnetic stripe card – not secure at all Smart card – contains cryptographic chip, CAC, PIV or SIMs

Biometric Factors

Fingerprint scanner Retinal Scanner Iris Scanner Facial recognition Voice recognition

Module B: Authentication protocols

PPP Authentication

PAP – insecure plaintext exchange
CHAP – somewhat secure but vulnerable
MS CHAP – improved CHAP, still not very secure
EAP – message format supporting a wide variety of authentication methods

Radius

Designed for dial-in Used for PPP and wireless networks Client-server system – client is remote access server not user workstation PPP protocols used for relaying credentials

Radius Authentication Process

- 1. NAS requests authentication
- 2. NAS sends access request to server
- 3. Server evaluates credentials, replies to NAS
- 4. NAS responds to client to either accept, reject or challenge

TACACS+

Advantages over RADIUS: TCP rather than UDP More complete encryption Fully separates all three AAA steps Supports non-IP protocols Disadvantages vs. RADIUS: Resource intensive Proprietary Primal intended for network devices

RAS

Used by Windows Server Server directly authenticates connection RRAS includes routing capability Allows Windows server to as an ISP Not to be confused with RDP

802.1X

Used mostly for WPA Enterprise RADIUS server using EAP Less secure for wired networks

Kerberos

Widely used SSO system – authentication server is trusted third party Realm – basic Kerberos network unit Principal – node belonging to a realm Key distribution center – Authentication server and Ticket granting server

Kerberos Authentication Steps

- 1. Client authenticates with AS
- 2. AS gives a ticket granting ticket (TGT)
- 3. Client presents TGT to TGS
- 4. TGS gives resource ticket
- 5. Client requests resource
- 6. Resource server grants access

LDAP

Simplified version of X.500 Centralized access to database with network information Queries used in scripts or sent as URLs Active directory uses LDAP and Kerberos Intended for trusted networks Secure LDAP is more secure, but still not considered safe on the internet

SAML

XML based SSO (Google and Salesforce) Principal contacts service provider first Allows many authentication mechanisms

Chapter 9: Access control

Module A: Access control principles

Access Control Models

DAC – object owner controls access, common in file systems MAC – administrators assign security labels and is common for military and high security environments

R(Rule)BAC – administrators define access rules, used by routers and firewalls R(Role)BAC – administrators define permissions for roles which users belong to ABAC – administrators define attributes for resources, users, and environments

NTFS File Permissions

Principals – owner and any number of groups SID – security identifier, identifies a principal ACE – access control entry, permissions for a SID DACL – contains all ACEs applying to one principal

Role Based Access Control

Elements of a MAC and DAC No strict ownership content Permissions assigned centrally Roles are similar to groups Permissions typically additive

Rule Based Access Control

Rules set by administrator Simple and widely used (Network ACLs, and Software whitelists/blacklists) Rule types – dynamic and static

Module B: Account management

Account Types User Privileged Shared/Generic Guest

Service

Active Directory Objects

User Contact Computer Printer Shared folder Group (security and distribution) Organizational Unit

Group Scopes

Domain local:

Visible in own domain Can contain most objects Can belong to only other domain local groups Best used to assign permissions

Global:

Visible everywhere Can contain objects in same domain Can belong to any universal or domain local group Best used to organize users

Universal

Visible everywhere Can contain objects from any domain Can belong to any universal or domain local group Best used to nest global groups

Managing User Accounts

Define policies and then enforce them Strong but manageable passwords Lockout policy Credential management Disable unneeded accounts Assign group permissions Avoid generic accounts Continuous review

> Enable auditing logs Review user access settings

Using Security Templates

Use Group Policy Editor console to apply Use Microsoft Management Console to: Create, compare config to template, and apply

Chapter 10: Organizational security

Module A: Security policies

Regulatory Compliance

The Sarbanes-Oxley Act of 2002 The Federal Information Security Management Act The Health Insurance Portability and Accountability Act The Family Educational Rights and Privacy Act The Gramm-leach-Bliley Act The Payment Card Industry Data Security Standard

Policy Framework

NIST – NIST 800 series describes the cybersecurity standards and best practices for US federal government

ISO – ISO 27000 series is very broad policy framework containing security guidelines for all sorts of organizations

COBIT – Control Objectives for Information and Related Technologies published by ISACA

ITIL – focused on the service aspect of IT

Security Policies by Role

Managerial Staff:

Legal or regulatory requirements Who has access to what Activities, processes and actions necessary to enact How employees are expected to comply Consequences for noncompliance

IT administrators and technicians

Best practice and security goals

- Technological standards
- Procedure documents
- User permission policies
- Data disposal policies

Types of Policies

Acceptable use policies

Secure practices and guidelines for use of network resources

Codified expectations of user privacy

Creating and maintaining passwords

Asset management policies

Tracking of hardware and software

Incident Response policies Steps to be taken in response to incidents Disaster planning and business continuity policies Steps to be taken to secure assets, protect staff and maintain business operations during disruptions Change management policy Guidelines for updating policies and procedures Standard operating procedures Steps for routine tasks

Password Policies

Length – 8 to 12 characters recommended Complexity – mix of letters, numbers and special characters Duration – 30 to 90 day replacement History – 12 to 24 prior passwords stored Sharing and Storage – prohibit where possible, secure where not

Secure Personnel Policies

Least privilege – limits damage done by malice, error or attacker Mandatory vacations – uncovers fraud or ongoing mistakes Rotation of duties Separation of duties – enables employees to check each others' work Recertification – regular review and approval process Clean desk policy – prevents data loss or theft

Asset Management

IT Assets:

Computers and network appliances Peripherals and other devices Data and storage media Software and software licenses Supporting infrastructure

Asset roles:

Owner Custodian User

Business Agreements

Service level agreement – formal definition of a service provided to or by the organization

Memorandum of understanding – a less formal agreement of mutual goals between two or more organization

Interconnection security agreement – a security focused document that specifies the technical requirements in forming a data connection between two parties

Business partnership agreement – a written agreement defining the general relationship between business partners

Non disclosure agreement – legal agreement outlining proprietary or confidential information that may not be disclosed

Adverse Action Policies

Checks to perform in relation to benefits Reporting requirements: What to report to whom How quickly action must be reported Privacy requirements for background check Remedies subject can pursue to dispute or correct results

Social Media Risks

Use can be time consuming Use single sign on with shared credentials Many employees use same passwords for personal accounts as for work Postings can reveal sensitive information Postings commonly used in social engineering attacks Employee behaviors can be liability for employer

📥 Module B: User training

Role Based Training

End users:

Common threats and how to avoid them Customer facing employees

Social engineering and public reputation

Privileged users:

Elevated privileges means more risk

Administrators:

Detailed procedures and evolving threats Incident response teams:

Response procedures and forensics

Management

High level view of assets and general threats

Handling Data

Data should be classified by nature

Labeling, storage and access permissions

Special data should be handled appropriately

PII, HIPAAA, PCI-DSS, Customer and partner data

Data transit

Secure network protocols, mobile devices and removable storage

Data disposal

Module C: Physical security and safety

Facility and Location Concerns

Location issues – crime, disaster, utilities, emergency Perimeter – sturdy, sensors and cameras, visibility Barriers Secure doors/windows Visibility – lighting, escape routes

Secure Entryways

Conventional locks Electronic locks – passcode, ID badge, biometrics, fail secure vs fail safe Guards Mantrap Entry Logging

HVAC Systems

Temperature range Humidity range HVAC settings Air Flow Sudden Changes

EMI Shielding

Electromagnetic interference Radio frequency interference Sources – motors, microwaves, HVAC, industrial equipment Protections – shielded cables, faraday cage, TEMPEST standards

Fire Suppression

Fire extinguishers: Class A for solids Class B for liquids Class C for electrical Class D for metals Class K for cooking oils/fats Fixed systems: Sprinklers, halon/inert gas

Chapter 11: Disaster planning and recovery

4	Module A: Business continuity
	Continuity Planning
	Business continuity plan (BCP)
	Comprehensive plan with risk analysis, controls, and service restoration
	procedures
	Business impact analysis (BIA)
	Assessment of critical business functions
	Disaster recovery plan (DRP)
	Technical plan for specific disaster type
	IT contingency plan
	Restoration plan for IT systems
	Continuity of operations plan (COOP)
	Procedure for temporary site during recovery
	Crisis communications plan
	Internal and external
	Succession plan
	Procedures for sudden changes of personnel

Creating a BCP

- 1. Perform a risk assessment, much like for normal security planning
- 2. Create a BIA
- 3. Design the BCP and its supporting recovery plans and controls
- 4. Implement and test the plan
- 5. Analyze the results to apply further refinement

Creating a BIA

- 1. Identify functions critical to sustained business operations
- 2. Identify resources used by each critical function
- 3. Prioritize critical functions
- 4. Identify threats to each function
- 5. Determine mitigation techniques for each threat

Disaster Recovery Plans

System documentation Reserve resources Vendor lists Backup policies Recovery procedures Personnel list Emergency contacts

Module B: Fault tolerance and recovery

Recovery Objectives

Recovery time objective

Maximum expected amount of down time in case of a failure Recovery point objective

Maximum expected period of time for which data will be lost in the case of disaster

Alternate Sites and Spare Parts

Replacement parts – hot spare is ready to go, cold spare is ready to install Hot site – fully equipped backup location that is ready in hours Cold site – Space and utilities but no hardware Warm site – some hardware, but not ready to go

Data Backups

Archive bit – marks data needing backup Full backup – all data on volume Incremental backup – backs up only files with set archive bit Snapshot – quickly capture state of system

Creating Backup Policies

- 1. Identify what data is important to backup
- 2. Determine retention requirements
- 3. Choose backup strategy and schedule
- 4. Plan data security
- 5. Assign personnel responsibilities
- 6. Create and apply a backup testing schedule

Module C: Incident response

Forensic Evidence

Evidence admissible in court

Testimony – sworn statement, oral or written Real evidence – physical object relevant to the case Demonstrative evidence – a representation of an object or event Digital evidence – evidence recorded in a digital format

Collecting Evidence

- 1. Secure access to systems and data
- 2. If necessary, access evidence through eDiscovery
- 3. Classify evidence by order of volatility
- 4. Capture evidence
- 5. Take hashes
- 6. Analyze data

7. Assemble findings

Incident Response Process

- 1. Preparation
- 2. Identification
- 3. Containment
- 4. Investigation
- 5. Eradication
- 6. Recovery
- 7. Lessons learned

Identifying Incidents

- 1. Rely on multiple sources
- 2. Examine anything unusual
- 3. Evaluate the incident's nature
- 4. Evaluate incident scope and severity
- 5. Escalate the incident appropriately

Eradicating Problems

- 1. Clean up damage
- 2. Harden network against recurrence
- 3. Notify relevant personnel

Restoring Service

- 1. Create service restoration plan
- 2. Certify restored system are operational and secure
- 3. Formally restore services
- 4. Continue monitoring